影響隔熱材料導熱系數的主要因素:
一、材料類型
隔熱材料(絕熱材料)類型不同,導熱系數不同。隔熱材料的物質構成不同,其物理熱性能也就不同;隔熱機理存有區(qū)別,其導熱性能或導熱系數也就各有差異。
即使對于同一物質構成的隔熱材料,內部結構不同,或生產的控制工藝不同,導熱系數的差別有時也很大。對于孔隙率較低的固體隔熱材料,結晶結構的導熱系數zui大,微晶體結構的次之,玻璃體結構的zui小。但對于孔隙率高的隔熱材料,由于氣體(空氣)對導熱系數的影響起主要作用,固體部分無論是晶態(tài)結構還是玻璃態(tài)結構,對導熱系數的影響都不大。
二、工作溫度
溫度對各類絕熱材料導熱系數均有直接影響,溫度提高,材料導熱系數上升。因為溫度升高時,材料固體分子的熱運動增強,同時材料孔隙中空氣的導熱和孔壁間的輻射作用也有所增加。但這種影響,在溫度為0-50℃范圍內并不顯著,只有對處于高溫或負溫下的材料,才要考慮溫度的影響。
三、含濕比率
絕大多數的保溫絕熱材料都具有多孔結構,容易吸濕。材料吸濕受潮后,其導熱系數增大。當含濕率大于5%-10%時,導熱系數的增大在多孔材料中表現得zui為明顯。
這是由于當材料的孔隙中有了水分(包括水蒸氣)后,孔隙中蒸汽的擴散和水分子的運動將起主要傳熱作用,而水的導熱系數比空氣的導熱系數大20倍左右,故引起其有效導熱系數的明顯升高。如果孔隙中的水結成了冰,冰的導熱系數更大,其結果使材料的導熱系數更加增大。所以,非憎水型隔熱材料在應用時必須注意防水避潮。
四、孔隙特征
在孔隙率相同的條件下,孔隙尺寸越大,導熱系數越大;互相連通型的孔隙比封閉型孔隙的導熱系數高,封閉孔隙率越高,則導熱系數越低。
五、容重大小
容重(或比重、密度)是材料氣孔率的直接反映,由于氣相的導熱系數通常均小于固相導熱系數,所以保溫隔熱材料往往都具有很高的氣孔率,也即具有較小的容重。一般情況下,增大氣孔率或減少容重都將導致導熱系數的下降。
但對于表觀密度很小的材料,特別是纖維狀材料(如超細玻璃纖維),當其表觀密度低于某一極限值時,導熱系數反而會增大,這是由于孔隙率增大時互相連通的孔隙大大增多,從而使對流作用得以加強。因此這類材料存在一個*表觀密度,即在這個表觀密度時導熱系數zui小。
六、材料粒度
常溫時,松散顆粒型材料的導熱系數隨著材料粒度的減小而降低。粒度大時,顆粒之間的空隙尺寸增大,其間空氣的導熱系數必然增大。此外,粒度越小,其導熱系數受溫度變化的影響越小。
七、熱流方向
導熱系數與熱流方向的關系,僅僅存在于各向異性的材料中,即在各個方向上構造不同的材料中。
纖維質材料從排列狀態(tài)看,分為方向與熱流向垂直和纖維方向與熱流向平行兩種情況。傳熱方向和纖維方向垂直時的絕熱性能比傳熱方向和纖維方向平行時要好一些。一般情況下纖維保溫材料的纖維排列是后者或接近后者,同樣密度條件下,其導熱系數要比其它形態(tài)的多孔質保溫材料的導熱系數小得多。
對于各向異性的材料(如木材等),當熱流平行于纖維方向時,受到阻力較??;而垂直于纖維方向時,受到的阻力較大。以松木為例,當熱流垂直于木紋時,導熱系數為0.17w/(m·K),平行于木紋時,導熱系數為0.35W/(m·K)。
氣孔質材料分為氣泡類固體材料和粒子相互輕微接觸類固體材料兩種。具有大量或無數多開口氣孔的隔熱材料,由于氣孔連通方向更接近于與傳熱方向平行,因而比具有大量封閉氣孔材料的絕熱性能要差一些。
八、填充氣體
隔熱材料中,大部分熱量是從孔隙中的氣體傳導的。因此,隔熱材料的熱導率在很大程度上決定于填充氣體的種類。低溫工程中如果填充氦氣或氫氣,可作為一級近似,認為隔熱材料的熱導率與這些氣體的熱導率相當,因為氦氣和氫氣的熱導率都比較大。
九、比熱容
熱導率=熱擴散系數×比熱×密度。在熱擴散系數和密度條件相同的情況下,比熱越大,導熱系數越高。
隔熱材料的比熱對于計算絕熱結構在冷卻與加熱時所需要冷量(或熱量)有關。在低溫下,所有固體的比熱變化都很大。在常溫常壓下,空氣的質量不超過隔熱材料的5%,但隨著溫度的下降,氣體所占的比重越來越大。因此,在計算常壓下工作的隔熱材料時,應當考慮這一因素。
對于常用隔熱材料而言,上述各項因素中以表觀密度和濕度的影響zui大。因而在測定材料的導熱系數時,必須同時測定材料的表觀密度。至于濕度,對于多數隔熱材料可取空氣相對濕度為80%一85%時材料的平衡濕度作為參考狀態(tài),應盡可能在這種濕度條件下測定材料的導熱系數。